

MicroFS

A simple command line tool and module for interacting with the limited
file system provided by MicroPython on the BBC micro:bit.

Installation

To install simply type:

$ pip install microfs

…and the package will download from PyPI. If you wish to upgrade to the
latest version, use the following command:

$ pip install --no-cache --upgrade microfs

Usage

There are two ways to use microfs - as a module in your Python code or as a
stand-alone command to use from your shell (ufs).

In Code

In your Python script import the required functions like this:

from microfs import ls, rm, put, get, get_serial

Read the API documentation below to learn how each of the functions works.

Command Line

From the command line (but not the Python shell) use the “ufs” (“u” = micro)
command.

To read the built-in help:

$ ufs --help

List the files on the device:

$ ufs ls

You can also specify a delimiter to separte file names displayed on the output (default is whitespace ‘ ‘):

use ';' as a delimiter
$ ufs ls ';'

Delete a file on the device:

$ ufs rm foo.txt

Copy a file onto the device:

$ ufs put path/to/local.txt

Get a file from the device:

$ ufs get remote.txt

The put and get commands optionally take a further argument to specify
the name of the target file:

$ ufs put /path/to/local.txt remote.txt
$ ufs get remote.txt local.txt

Development

The source code is hosted in GitHub. Please feel free to fork the repository.
Assuming you have Git installed you can download the code from the canonical
repository with the following command:

$ git clone https://github.com/ntoll/microfs.git

Ensure you have the correct dependencies for development installed by creating
a virtualenv and running:

$ pip install -r requirements.txt

To locally install your development version of the module into a virtualenv,
run the following command:

$ python setup.py develop

There is a Makefile that helps with most of the common workflows associated
with development. Typing “make” on its own will list the options thus:

$make

There is no default Makefile target right now. Try:

make clean - reset the project and remove auto-generated assets.
make pyflakes - run the PyFlakes code checker.
make pep8 - run the PEP8 style checker.
make test - run the test suite.
make coverage - view a report on test coverage.
make check - run all the checkers and tests.
make package - create a deployable package for the project.
make publish - publish the project to PyPI.
make docs - run sphinx to create project documentation.

Contributing to MicroFS

Hey! Many thanks for wanting to improve MicroFS.

Contributions are welcome without prejudice from anyone irrespective of
age, gender, religion, race or sexuality. If you’re thinking, “but they don’t
mean me”, then we especially mean YOU. Good quality code and engagement with
respect, humour and intelligence wins every time.

	If you’re from a background which isn’t well-represented in most geeky groups, get involved - we want to help you make a difference.

	If you’re from a background which is well-represented in most geeky groups, get involved - we want your help making a difference.

	If you’re worried about not being technical enough, get involved - your fresh perspective will be invaluable.

	If you think you’re an imposter, get involved.

	If your day job isn’t code, get involved.

	This isn’t a group of experts, just people. Get involved!

	We are interested in educational, social and technical problems. If you are too, get involved.

	This is a new community. No-one knows what they are doing, so, get involved.

We expect contributors to follow the Python Software Foundation’s Code of
Conduct: https://www.python.org/psf/codeofconduct/

Feedback may be given for contributions and, where necessary, changes will be
politely requested and discussed with the originating author. Respectful yet
robust argument is most welcome.

Finally, contributions are subject to the following caveat: the contribution
was created by the contributor who, by submitting the contribution, is
confirming that they have the authority to submit the contribution and place it
under the license as defined in the LICENSE file found within this repository.

Checklist

	Your code should be commented in plain English (British spelling).

	If your contribution is for a major block of work and you’ve not done so
already, add yourself to the AUTHORS file following the convention found
therein.

	You MUST include tests. We have 100% test coverage.

	Have fun!

API

This module contains functions for running remote commands on the BBC micro:bit
relating to file system based operations.

You may:

	ls - list files on the device. Based on the equivalent Unix command.

	rm - remove a named file on the device. Based on the Unix command.

	put - copy a named local file onto the device a la equivalent FTP command.

	get - copy a named file from the device to the local file system a la FTP.

	
microfs.ls(serial=None)[source]

	List the files on the micro:bit.

If no serial object is supplied, microfs will attempt to detect the
connection itself.

Returns a list of the files on the connected device or raises an IOError if
there’s a problem.

	
microfs.rm(filename, serial=None)[source]

	Removes a referenced file on the micro:bit.

If no serial object is supplied, microfs will attempt to detect the
connection itself.

Returns True for success or raises an IOError if there’s a problem.

	
microfs.put(filename, target=None, serial=None)[source]

	Puts a referenced file on the LOCAL file system onto the
file system on the BBC micro:bit.

If no serial object is supplied, microfs will attempt to detect the
connection itself.

Returns True for success or raises an IOError if there’s a problem.

	
microfs.get(filename, target=None, serial=None)[source]

	Gets a referenced file on the device’s file system and copies it to the
target (or current working directory if unspecified).

If no serial object is supplied, microfs will attempt to detect the
connection itself.

Returns True for success or raises an IOError if there’s a problem.

	
microfs.get_serial()[source]

	Detect if a micro:bit is connected and return a serial object to talk to
it.

Release History

1.4.4

	New feature. Thanks to @makinteract, it is possible to add an optional
delimeter for the ls command. Please see PR #28 for more details.

1.4.3

	Bug fix. See commentary in issue #22. Thanks again to alexandros769.

1.4.2

	Update getting of data from micro:bit device to deal with control characters
found within the file on the device. Thanks to Damien George for the fix and
to GitHub user alexandros769 for reporting it.

1.4.1

	Clamp PySerial version to use with microfs to a version known to work.

1.4.0

	Updated and changed the get functionality to work on a wider range of
supported boards. Many thanks to Carlos Pereira Atencio for putting in the
effort to make this happen.

1.3.1

	Fix bug in version parsing that was mangling the machine attribute.

1.3.0

	Added a new function (not available via the command line) to get the version
of MicroPython on the device.

	API CHANGE The find_microbit function now returns a tuple with position 0
as the port and position 1 as the serial number of the connected device.

1.2.3

	Extensive debugging and a fix by Carlos Pereira Atencio to ensure that serial
connections are opened, closed and made ready for microfs related commands in
a robust manner.

1.2.2

	The get and put commands optionally take a further argument to specify the
name of the target file.

1.2.1

	Made implicit string concatenation explicit.

1.2.0

	API CHANGE the serial object passed into command functions is optional.

	API CHANGE call signature changes on command functions.

1.1.2

	Allow external modules to use built-in device detection and connection.

1.1.1

	Unlink command logic from device detection and serial connection.

1.1.0

	Fix broken ‘put’ and ‘get’ commands to work with arbitrary file sizes.

	Fix error when working with binary data.

	Update execute function to work with lists of multiple commands.

	Minor refactor to extract raw mode related code.

	Updated tests to keep coverage at 100% on both Python 2 and Python 3.

1.0.2

	Remove spare print call.

1.0.1

	Fix broken setup.

1.0.0

	Full implementation of all the expected features.

	100% test coverage.

	Comprehensive documentation.

0.0.1

	Initial release. Basic functionality.

Copyright (c) 2016 Nicholas H.Tollervey

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 microfs	

Index

 G
 | L
 | M
 | P
 | R

G

 	
 	get() (in module microfs)

 	
 	get_serial() (in module microfs)

L

 	
 	ls() (in module microfs)

M

 	
 	microfs (module)

P

 	
 	put() (in module microfs)

R

 	
 	rm() (in module microfs)

 All modules for which code is available

	microfs

 Source code for microfs

-*- coding: utf-8 -*-
"""
This module contains functions for running remote commands on the BBC micro:bit
relating to file system based operations.

You may:

* ls - list files on the device. Based on the equivalent Unix command.
* rm - remove a named file on the device. Based on the Unix command.
* put - copy a named local file onto the device a la equivalent FTP command.
* get - copy a named file from the device to the local file system a la FTP.
"""
from __future__ import print_function
import ast
import argparse
import sys
import os
import time
import os.path
from serial.tools.list_ports import comports as list_serial_ports
from serial import Serial

PY2 = sys.version_info < (3,)

__all__ = ["ls", "rm", "put", "get", "get_serial"]

#: The help text to be shown when requested.
_HELP_TEXT = """
Interact with the basic filesystem on a connected BBC micro:bit device.
You may use the following commands:

'ls' - list files on the device (based on the equivalent Unix command);
'rm' - remove a named file on the device (based on the Unix command);
'put' - copy a named local file onto the device just like the FTP command; and,
'get' - copy a named file from the device to the local file system a la FTP.

For example, 'ufs ls' will list the files on a connected BBC micro:bit.
"""

COMMAND_LINE_FLAG = False # Indicates running from the command line.
SERIAL_BAUD_RATE = 115200

def find_microbit():
 """
 Returns a tuple representation of the port and serial number for a
 connected micro:bit device. If no device is connected the tuple will be
 (None, None).
 """
 ports = list_serial_ports()
 for port in ports:
 if "VID:PID=0D28:0204" in port[2].upper():
 return (port[0], port.serial_number)
 return (None, None)

def raw_on(serial):
 """
 Puts the device into raw mode.
 """

 def flush_to_msg(serial, msg):
 """Read the rx serial data until we reach an expected message."""
 data = serial.read_until(msg)
 if not data.endswith(msg):
 if COMMAND_LINE_FLAG:
 print(data)
 raise IOError("Could not enter raw REPL.")

 def flush(serial):
 """Flush all rx input without relying on serial.flushInput()."""
 n = serial.inWaiting()
 while n > 0:
 serial.read(n)
 n = serial.inWaiting()

 raw_repl_msg = b"raw REPL; CTRL-B to exit\r\n>"
 # Send CTRL-B to end raw mode if required.
 serial.write(b"\x02")
 # Send CTRL-C three times between pauses to break out of loop.
 for i in range(3):
 serial.write(b"\r\x03")
 time.sleep(0.01)
 flush(serial)
 # Go into raw mode with CTRL-A.
 serial.write(b"\r\x01")
 flush_to_msg(serial, raw_repl_msg)
 # Soft Reset with CTRL-D
 serial.write(b"\x04")
 flush_to_msg(serial, b"soft reboot\r\n")
 # Some MicroPython versions/ports/forks provide a different message after
 # a Soft Reset, check if we are in raw REPL, if not send a CTRL-A again
 data = serial.read_until(raw_repl_msg)
 if not data.endswith(raw_repl_msg):
 serial.write(b"\r\x01")
 flush_to_msg(serial, raw_repl_msg)
 flush(serial)

def raw_off(serial):
 """
 Takes the device out of raw mode.
 """
 serial.write(b"\x02") # Send CTRL-B to get out of raw mode.

[docs]def get_serial():
 """
 Detect if a micro:bit is connected and return a serial object to talk to
 it.
 """
 port, serial_number = find_microbit()
 if port is None:
 raise IOError("Could not find micro:bit.")
 return Serial(port, SERIAL_BAUD_RATE, timeout=1, parity="N")

def execute(commands, serial=None):
 """
 Sends the command to the connected micro:bit via serial and returns the
 result. If no serial connection is provided, attempts to autodetect the
 device.

 For this to work correctly, a particular sequence of commands needs to be
 sent to put the device into a good state to process the incoming command.

 Returns the stdout and stderr output from the micro:bit.
 """
 close_serial = False
 if serial is None:
 serial = get_serial()
 close_serial = True
 time.sleep(0.1)
 result = b""
 raw_on(serial)
 time.sleep(0.1)
 # Write the actual command and send CTRL-D to evaluate.
 for command in commands:
 command_bytes = command.encode("utf-8")
 for i in range(0, len(command_bytes), 32):
 serial.write(command_bytes[i: min(i + 32, len(command_bytes))])
 time.sleep(0.01)
 serial.write(b"\x04")
 response = serial.read_until(b"\x04>") # Read until prompt.
 out, err = response[2:-2].split(b"\x04", 1) # Split stdout, stderr
 result += out
 if err:
 return b"", err
 time.sleep(0.1)
 raw_off(serial)
 if close_serial:
 serial.close()
 time.sleep(0.1)
 return result, err

def clean_error(err):
 """
 Take stderr bytes returned from MicroPython and attempt to create a
 non-verbose error message.
 """
 if err:
 decoded = err.decode("utf-8")
 try:
 return decoded.split("\r\n")[-2]
 except Exception:
 return decoded
 return "There was an error."

[docs]def ls(serial=None):
 """
 List the files on the micro:bit.

 If no serial object is supplied, microfs will attempt to detect the
 connection itself.

 Returns a list of the files on the connected device or raises an IOError if
 there's a problem.
 """
 out, err = execute(
 [
 "import os",
 "print(os.listdir())",
],
 serial,
)
 if err:
 raise IOError(clean_error(err))
 return ast.literal_eval(out.decode("utf-8"))

[docs]def rm(filename, serial=None):
 """
 Removes a referenced file on the micro:bit.

 If no serial object is supplied, microfs will attempt to detect the
 connection itself.

 Returns True for success or raises an IOError if there's a problem.
 """
 commands = [
 "import os",
 "os.remove('{}')".format(filename),
]
 out, err = execute(commands, serial)
 if err:
 raise IOError(clean_error(err))
 return True

[docs]def put(filename, target=None, serial=None):
 """
 Puts a referenced file on the LOCAL file system onto the
 file system on the BBC micro:bit.

 If no serial object is supplied, microfs will attempt to detect the
 connection itself.

 Returns True for success or raises an IOError if there's a problem.
 """
 if not os.path.isfile(filename):
 raise IOError("No such file.")
 with open(filename, "rb") as local:
 content = local.read()
 filename = os.path.basename(filename)
 if target is None:
 target = filename
 commands = [
 "fd = open('{}', 'wb')".format(target),
 "f = fd.write",
]
 while content:
 line = content[:64]
 if PY2:
 commands.append("f(b" + repr(line) + ")")
 else:
 commands.append("f(" + repr(line) + ")")
 content = content[64:]
 commands.append("fd.close()")
 out, err = execute(commands, serial)
 if err:
 raise IOError(clean_error(err))
 return True

[docs]def get(filename, target=None, serial=None):
 """
 Gets a referenced file on the device's file system and copies it to the
 target (or current working directory if unspecified).

 If no serial object is supplied, microfs will attempt to detect the
 connection itself.

 Returns True for success or raises an IOError if there's a problem.
 """
 if target is None:
 target = filename
 commands = [
 "\n".join(
 [
 "try:",
 " from microbit import uart as u",
 "except ImportError:",
 " try:",
 " from machine import UART",
 " u = UART(0, {})".format(SERIAL_BAUD_RATE),
 " except Exception:",
 " try:",
 " from sys import stdout as u",
 " except Exception:",
 " raise Exception('Could not find UART module in device.')",
]
),
 "f = open('{}', 'rb')".format(filename),
 "r = f.read",
 "result = True",
 "\n".join(
 [
 "while result:",
 " result = r(32)",
 " if result:",
 " u.write(repr(result))",
]
),
 "f.close()",
]
 out, err = execute(commands, serial)
 if err:
 raise IOError(clean_error(err))
 # Recombine the bytes while removing "b'" from start and "'" from end.
 assert out.startswith(b"b'")
 assert out.endswith(b"'")
 out = eval(b"".join(out.split(b"'b'")))
 with open(target, "wb") as f:
 f.write(out)
 return True

def version(serial=None):
 """
 Returns version information for MicroPython running on the connected
 device.

 If such information is not available or the device is not running
 MicroPython, raise a ValueError.

 If any other exception is thrown, the device was running MicroPython but
 there was a problem parsing the output.
 """
 try:
 out, err = execute(
 [
 "import os",
 "print(os.uname())",
],
 serial,
)
 if err:
 raise ValueError(clean_error(err))
 except ValueError:
 # Re-raise any errors from stderr raised in the try block.
 raise
 except Exception:
 # Raise a value error to indicate unable to find something on the
 # microbit that will return parseable information about the version.
 # It doesn't matter what the error is, we just need to indicate a
 # failure with the expected ValueError exception.
 raise ValueError()
 raw = out.decode("utf-8").strip()
 raw = raw[1:-1]
 items = raw.split(", ")
 result = {}
 for item in items:
 key, value = item.split("=")
 result[key] = value[1:-1]
 return result

def main(argv=None):
 """
 Entry point for the command line tool 'ufs'.

 Takes the args and processes them as per the documentation. :-)

 Exceptions are caught and printed for the user.
 """
 if not argv:
 argv = sys.argv[1:]
 try:
 global COMMAND_LINE_FLAG
 COMMAND_LINE_FLAG = True

 parser = argparse.ArgumentParser(description=_HELP_TEXT)
 subparsers = parser.add_subparsers(
 dest="command", help="One of 'ls', 'rm', 'put' or 'get'"
)

 ls_parser = subparsers.add_parser("ls")
 ls_parser.add_argument(
 "delimiter",
 nargs="?",
 default=" ",
 help='Specify a delimiter string (default is whitespace). Eg. ";"',
)

 rm_parser = subparsers.add_parser("rm")
 rm_parser.add_argument(
 "path", nargs="?", help="Specify a target filename."
)

 get_parser = subparsers.add_parser("get")
 get_parser.add_argument(
 "path", nargs="?", help="Use when a file needs referencing."
)
 get_parser.add_argument(
 "target", nargs="?", help="Specify a target filename."
)

 put_parser = subparsers.add_parser("put")
 put_parser.add_argument(
 "path", nargs="?", help="Use when a file needs referencing."
)
 put_parser.add_argument(
 "target", nargs="?", help="Specify a target filename."
)

 args = parser.parse_args(argv)
 if args.command == "ls":
 list_of_files = ls()
 if list_of_files:
 print(args.delimiter.join(list_of_files))
 elif args.command == "rm":
 if args.path:
 rm(args.path)
 else:
 print('rm: missing filename. (e.g. "ufs rm foo.txt")')
 elif args.command == "put":
 if args.path:
 put(args.path, args.target)
 else:
 print('put: missing filename. (e.g. "ufs put foo.txt")')
 elif args.command == "get":
 if args.path:
 get(args.path, args.target)
 else:
 print('get: missing filename. (e.g. "ufs get foo.txt")')
 else:
 # Display some help.
 parser.print_help()
 except Exception as ex:
 # The exception of no return. Print exception information.
 print(ex)

 nav.xhtml

 Table of Contents

 		
 MicroFS

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

